[AC98]Alan Agresti and Brent A. Coull. Approximate Is Better than “Exact” for Interval Estimation of Binomial Proportions. The American Statistician, 52(2):119–126, 1998. URL:, doi:10.2307/2685469.
[BH10]Kurt Binder and Dieter W. Heermann. Monte Carlo Simulation in Statistical Physics. Springer, Berlin, Heidelberg, 2010. URL:, doi:10.1007/978-3-642-03163-2.
[BH57]S. R. Broadbent and J. M. Hammersley. Percolation processes. I. Crystals and mazes. Mathematical Proceedings of the Cambridge Philosophical Society, 53(03):629–641, July 1957. URL:, doi:10.1017/s0305004100032680.
[Cam11]Ewan Cameron. On the Estimation of Confidence Intervals for Binomial Population Proportions in Astronomy: The Simplicity and Superiority of the Bayesian Approach. Publications of the Astronomical Society of Australia, 28:128–139, 2011. URL:, doi:10.1071/as10046.
[DCB01]Anirban DasGupta, Tony T. Cai, and Lawrence D. Brown. Interval Estimation for a Binomial Proportion. Statistical Science, 16(2):101–133, 2001. URL:, doi:10.1214/ss/1009213286.
[Fis67]Michael E. Fisher. The theory of condensation and the critical point. Physics, 3(5):255+, 1967.
[Flo41]Paul J. Flory. Molecular Size Distribution in Three Dimensional Polymers. I. Gelation. Journal of the American Chemical Society, 63(11):3083–3090, 1941. URL:, doi:10.1021/ja01856a061.
[HEG14]Allen Hunt, Robert Ewing, and Behzad Ghanbarian. Percolation Theory for Flow in Porous Media. volume 880 of Lecture Notes in Physics. Springer, Cham, Switzerland, third edition, 2014. URL:, doi:10.1007/978-3-319-03771-4.
[NZ01]M. E. J. Newman and R. M. Ziff. Fast monte carlo algorithm for site or bond percolation. Physical Review E, 64(1):016706+, 2001. URL:, arXiv:cond-mat/0101295, doi:10.1103/physreve.64.016706.
[Pei14]Tiago P. Peixoto. The graph-tool python library. figshare, 2014. URL:, doi:10.6084/m9.figshare.1164194.
[Sta79]D. Stauffer. Scaling theory of percolation clusters. Physics Reports, 54(1):1–74, 1979. URL:, doi:10.1016/0370-1573(79)90060-7.
[SA94]Dietrich Stauffer and Amnon Aharony. Introduction to Percolation Theory. Taylor & Francis, London, second edition, 1994. URL:
[Sto43]Walter H. Stockmayer. Theory of Molecular Size Distribution and Gel Formation in Branched-Chain Polymers. The Journal of Chemical Physics, 11(2):45–55, 1943. URL:, doi:10.1063/1.1723803.
[Was04]Larry Wasserman. All of Statistics. Springer New York, 2004. URL:, doi:10.1007/978-0-387-21736-9.