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Welcome to pypercolate!

pypercolate is a scientific Python package that implements the Newman-Ziff
algorithm [http://arxiv.org/abs/cond-mat/0101295] for Monte Carlo simulation of percolation on graphs.

May 13, 2015 (Version )

Andreas Sorge <pypercolate@asorge.de>
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 [http://dx.doi.org/10.5281/zenodo.17241]Please cite the pypercolate package as: Andreas Sorge. (2015). pypercolate
v0.2. Zenodo. 10.5281/zenodo.17241 (BibTEX [https://zenodo.org/record/17241/export/hx])

This documentation is licensed under a Creative Commons Attribution 4.0 International License [http://creativecommons.org/licenses/by/4.0/].
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License

pypercolate is free software; you can redistribute it and/or modify it under
the terms of the Apache License 2.0 [http://www.apache.org/licenses/LICENSE-2.0.html]:


Copyright 2014–2015 The pypercolate developers

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at


http://www.apache.org/licenses/LICENSE-2.0


Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
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Changelog


v0.2.5 2015-05-13

	[Bug]:  Fix changelog






v0.2.4 2015-05-13

	[Bug] #9 [https://github.com/andsor/pypercolate/issues/9]: Fix documentation and move it to github pages






v0.2.3 2015-04-30

	[Bug]:  Fix setup.cfg classifiers






v0.2.2 2015-04-30

	[Bug]:  Change author email






v0.2.1 2015-04-29

	[Bug]:  Update Zenodo DOI






v0.2.0 2015-04-25

	[Feature]:  Basic functionality









          

      

      

    


    
    

  

    
      Navigation

      
        	
          next

        	
          previous |

        	pypercolate 
 
      

    


    
      
          
            
  
Setup


Requirements

pypercolate runs under Python 2.7 and Python 3.4 (and later).
It requires the following Python packages:

future
numpy
scipy
networkx








Installation from PyPI

To install the most recent stable version from the Python Package Index
(PyPI) [https://pypi.python.org/pypi], including the dependencies, run

$ pip install percolate








Installation from source

To install the latest version from the source repository, run

$ pip install git+https://github.com/andsor/pypercolate.git
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Percolation Theory


Introduction

Percolation theory characterizes how global connectivity emerges in a system of
a large number of objects.
These objects connect according to some local rule constrained by an underlying
topology.
Thus, given the topology and the local rule, percolation theory yields the
global, emergent behavior [HEG14].
Early occurrences of percolation theory in the literature include the classic
works by Flory and Stockmayer on polymerization and the sol-gel transition
[Flo41][Sto43].
However, it is only later that a theory of percolation starts to condense
[BH57].

Definition ([HEG14], p. 2):
We say a system is at percolation, or percolates, if sufficiently many
objects are connected locally such that a global connection emerges.
This global connection is a continuous “chain” or “cluster” of locally
connected objects, which is unbounded in size (in infinite systems), or of the
order of the system size (in finite systems).

Typically, percolation also refers to a stochastic process of increasing
connectivity and eventual emergence of the giant cluster.
In an infinite system, this emergence in an ensemble of system configurations
constitutes a phase transition.
In fact, percolation is a phase transition paradigm
[SA94].

The central quantity in percolation settings is the cluster size distribution
\(n_s\), which we will introduce shortly.
The setting of percolation is a graph.
A typical setting is a regular lattice of sites connected to their nearest
neighbors.
In site percolation, all sites are subsequently occupied.
In bond percolation, it is the bonds that are subsequently added to form a
giant cluster of connected sites.

In the following, we introduce the concepts and notation mainly according to
Stauffer’s and Aharony’s classical textbook [SA94].




The cluster size distribution

In the regular lattice setting, a cluster is a maximum set of occupied sites
which are pairwise joined by paths on the lattice only traversing occupied
sites.
In general, a cluster is component of the graph.
The size \(s\) of a cluster is the number of nodes in the component.
Note that infinite graphs allow for infinite cluster sizes.

The occupation of sites, or the cluster sizes, typically depend on a (global)
system parameter.
For example, the paradigmatic percolation model is that of each site
independently being occupied with some probability \(p\) (Bernoulli percolation).
All the following statistics only require the general percolation setting of a
graph.
Let \(\varrho\) denote the system parameter.

Definition:
For any given cluster size \(s\), let the cluster number
\(n_s(\varrho, L)\) be the density of clusters of size \(s\) with
respect to the system size \(L\).

In other words, in a system of \(L\) sites, the cluster number
\(n_s(\varrho, L)\) is the number \(N_s(\varrho, L)\) of clusters of
size \(s\) divided by the total number \(L\) of sites,


\[n_s(\varrho, L) = \frac{N_s(\varrho,L)}{L}.\]

This definition also applies to systems of infinite size as


\[n_s(\varrho) = \lim_{L \to \infty} \frac{N_s(\varrho,L)}{L}.\]

The cluster size distribution \(n_s\) is the fundamental quantity in
percolation theory.




Percolation threshold and characteristic cluster size

Typically, in an infinite system the largest cluster grows with increasing
parameter \(\varrho\), and at some critical value \(\varrho_c\), an
infinite cluster appears.
This number \(\varrho_c\) is the percolation threshold.
At and above \(\varrho_c\), there is an infinite cluster, and the system is
said to percolate.

The probability that a system of size \(L\) percolates at parameter
\(\varrho\), i.e. has a cluster of order of the system size, is
\(\Pi(\varrho,L)\).
In the infinite system, we have


\[\begin{split}\Pi(\varrho) = \lim_{L \to \infty} \Pi(\varrho, L) = \begin{cases}
0 & \varrho < \varrho_c, \\
1 & \varrho \geq \varrho_c.
\end{cases}\end{split}\]

The percolation strength \(P(\varrho, L)\) is the fraction of sites
belonging to the infinite cluster.
In the infinite system, the limit strength \(P(\varrho) = \lim_{L \to
\infty} P(\varrho, L)\) is the typical order parameter of the percolation
transition.

The cluster size distribution typically is of the form


\[n_s(\varrho) \sim s^{-\tau} e^{- s/s_\xi}, \qquad (s \to \infty)\]

for large \(s\) and with some characteristic cluster size \(s_\xi\).
At the percolation transition, the characteristic cluster size \(s_\xi\)
diverges as a power law,


\[s_\xi \sim |\varrho_c - \varrho|^{-1/\sigma}, \qquad (\varrho \to \varrho_c)\]

with the critical exponent \(\sigma\).

In general, clusters of size \(s < s_\xi \sim |\varrho - \varrho_c|^{-1 /
\sigma}\) dominate the moments of the cluster size distribution.
These clusters effectively follow a power-law distribution \(n_s(\varrho)
\sim s^{-\tau}\), as all clusters at the critical point \(n_s(\varrho_c)
\sim s^{-\tau}\).
For \(s \gg s_\xi\), the distribution is cut off exponentially.
Thus, clusters in this regime do not exhibit “critical” behavior.




Average cluster size

For any given site, the probability that it is part of a cluster of size
\(s\) is \(s n_s\). The occupation probability
\(p(\varrho, L)\) is the probability that any given site is part of
a finite cluster, in a system of size \(L\) (may be infinite) at
parameter \(\varrho\),


\[p(\varrho, L) = \sum_{s=1}^\infty s n_s(\varrho, L) = M_1(\varrho, L),\]

which is the first moment of the cluster size distribution.

Hence, for any given site of any given finite cluster, the probability
\(w_s(\varrho, L)\) that the cluster is of size \(s\), is


\[w_s(\varrho, L) = \frac{1}{p(\varrho,L)} s n_s(\varrho, L),\]

with \(\sum_{s=1}^\infty w_s(\varrho, L) = 1\).

For any given site of any given finite cluster, the average size
\(S(\varrho, L)\) of the cluster is


\[S(\varrho, L) = \sum_{s=1}^\infty s w_s(\varrho, L) = \frac{1}{p(\varrho,
L)} \sum_{s=1}^\infty s^2 n_s(\varrho, L) = \frac{M_2(\varrho,
L)}{M_1(\varrho, L)},\]

which is the second moment divided by the first moment of the cluster size
distribution.
Note that this average is different from the average of the (finite) cluster
sizes in the system.
The average cluster size \(S(\varrho, L)\) is defined with respect to a
site, and thus, it is an intensive quantity [SA94].

Note that for infinite systems (\(L\to\infty\)), these statistics exclude
the infinite cluster.
At the critical point, the average cluster size \(S(\varrho_c)\)
nevertheless diverges as


\[S(\varrho) \sim |\varrho - \varrho_c|^{- \gamma}, \qquad (\varrho \to
\varrho_c)\]

with the critical exponent \(\gamma\).
As \(S\) is the second moment of the cluster size distribution (up to a
factor), it is a measure of fluctuations in the system.
Thus, divergence of \(S\) actually defines the percolation phase
transition.




Correlation length

The correlation function \(g(\mathbf{r})\) is the probability that a site
at position \(\mathbf{r}\) from an occupied site in a finite cluster
belongs to the same cluster.

Typically, for large \(r \equiv |\mathbf{r}|\), there is an exponential
cutoff, i.e. \(g(\mathbf{r}) \sim e^{-r/\xi}\), at the correlation length
\(\xi\).

Definition:
The correlation length \(\xi\) is defined as


\[\xi^2 = \frac{\sum_{\mathbf{r}} r^2 g(\mathbf{r})}{\sum_{\mathbf{r}}
g(\mathbf{r})}.\]

For a cluster of size \(s\), its radius of gyration \(R_s\) is
defined as the average square distance to the cluster center of mass
[SA94].
It turns out that \(2 R_s^2\) is the average square distance between two
sites of the same (finite) cluster.
Averaging over \(2R_s^2\) yields the squared correlation length
[SA94],


\[\xi^2 = \frac{\sum_s 2 R_s^2 s^2 n_s}{\sum_s s^2 n_s},\]

since \(s^2 n_s\) is the weight of clusters of size \(s\).
Hence, the correlation length is the radius of the clusters that dominate the
second moment of the cluster size distribution, or, the fluctuations.

The divergence of quantities at the critical point involves sums over all
cluster sizes \(s\).
The cutoff of the cluster number \(n_s\) at \(s_\xi \sim |\varrho -
\varrho_c|^{-1/\sigma}\) marks the cluster sizes \(s \approx s_\xi\) that
contribute the most to the sums and hence, to the divergence.
This also holds for the correlation length \(\xi\), which is the radius of
those clusters of sizes \(s \approx s_\xi\).
As such, this is the one and only length scale which characterizes the behavior
of an infinite system in the critical region [SA94].

The correlation length \(\xi\) defines the relevant length scale.
As \(\xi\) diverges at \(\varrho \to \varrho_c\), a length scale
is absent at the percolation transition \(\varrho = \varrho_c\).
This lack of a relevant length scale is a typical example of scale
invariance.
This implies that the system appears to be self-similar on length scales
smaller than \(\xi\).
As \(\xi\) becomes infinite at \(\varrho_c\), the whole system becomes
self-similar.
The lack of a relevant length scale also implies that functions of powers
(power laws) describe the relevant quantities in the critical region.
In particular, the correlation length itself diverges as a power law,


\[\xi \sim (\varrho - \varrho_c)^{-\nu}. \qquad (\varrho \to \varrho_c)\]

The form of this divergence is the same in all systems, which is called
universal behavior.
The critical exponent \(\nu\) depends only on general features of the
topology and the local rule, giving rise to universality classes of systems
with the same critical exponents.




Scaling relations

The scaling theory of percolation clusters relates the critical exponents of
the percolation transition to the cluster size distribution
[Sta79].
As the critical point lacks any length scale, the cluster sizes also need to
follow a power law,


\[n_s(\varrho_c) \sim s^{-\tau}, \qquad (\varrho \to \varrho_c, s \gg 1)\]

with the Fisher exponent \(\tau\) [Fis67].
The scaling assumption is that the ratio \(n_s(\varrho) / n_s(\varrho_c)\)
is a function of the ratio \(s / s_\xi(\varrho)\) only
[Sta79],


\[\frac{n_s(\varrho)}{n_s(\varrho_c)} = f\left( \frac{s}{s_\xi(\varrho)}
\right), \qquad (\varrho \to \varrho_c, s \gg 1).\]

As in the critical region, the characteristic cluster size diverges as
\(s_\xi \sim |\varrho - \varrho_c|^{-1/\sigma}\), we have \(s /
s_\xi(\varrho) \sim |(\varrho - \varrho_c) s^\sigma |^{1/\sigma}\), and hence


\[n_s(\varrho) \sim s^{-\tau} f((\varrho - \varrho_c) s^\sigma), \qquad
(\varrho \to \varrho_c, s \gg 1),\]

with some scaling function \(f\) which rapidly decays to zero, \(f(x)
\to 0\) for \(|x| > 1\) (\(s > s_\xi\))
[SA94].

It remains to determine the scaling relationship of cluster radius \(R_s\)
and cluster size \(s\) in the critical region.
For \(s \sim R_s^D\) for some possibly fractal cluster dimension \(D\),
we have [SA94]


\[\frac{1}{D} = \sigma \nu.\]

The cutoff cluster size \(s_\xi\) was the crossover size separating
critical behavior (\(n_s \sim s^{-\tau}\)) from non-critical behavior
(\(n_s \to 0\) exponentially fast).
Now, the correlation length \(\xi \sim s_\xi^{1/D} = s_\xi^{\sigma \nu}\)
is the crossover length separating the critical and non-critical regimes.

The following scaling law relates the system dimensionality \(d\) and the
fractal dimensionality \(D = \frac{1}{\sigma \nu}\) of the infinite cluster
to the exponents of the cluster size distribution [HEG14]:


\[\frac{\tau - 1}{\sigma \nu} = d, \qquad \tau = 1 + \frac{d}{D}\]

Consider the \(k\)-th raw moment of the cluster size distribution


\[M_k(\varrho) = \sum_s s^k n_s(\varrho)\]

which scales as


\[M_k(\varrho) \sim \sum_s s^{k-\tau} e^{-s/s_\xi(\varrho)} \sim |\varrho -
\varrho_c|^{(\tau -1 - k)/\sigma} \qquad (\varrho \to \varrho_c)\]

in the critical region.

In this region, above the percolation threshold (\(\varrho > \varrho_c\)),
the percolation strength behaves as [SA94]


\[P(\varrho) \sim \sum_s s (n_s(\varrho_c) - n_s(\varrho)) \sim \sum_s
s^{1-\tau}  \left(1 - e^{-s/s_\xi(\varrho)} \right) \sim (\varrho -
\varrho_c)^{(\tau -2)\sigma} \equiv (\varrho - \varrho_c)^\beta\]

defining the critical exponent \(\beta\) as


\[\beta = \frac{\tau - 2}{\sigma}.\]

As the second raw moment \(M_2(\varrho) \sim |\varrho - \varrho_c|^{(\tau
- 3)/\sigma}\), we have


\[\gamma = \frac{3 - \tau}{\sigma},\]

or


\[\sigma = \frac{1}{\beta + \gamma}, \tau = 2 + \frac{\beta}{\beta + \gamma}.\]

These are the scaling relations between the critical exponents, which all
derive from the exponents \(\tau\) and \(\sigma\) of the cluster size
distribution.
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The Newman–Ziff Algorithm


Introduction

The scope of the Newman–Ziff algorithm is the simulation and statistical
analysis of percolation on graphs [NZ01].
On regular lattices with \(N\) sites, the algorithm takes time
\(\mathcal{O}(N)\), which is an enormous improvement compared to the
\(\mathcal{O}(N^2)\) complexity of conventional percolation simulation
algorithms.

In site percolation problems, each node of the graph is either “occupied” or
“empty”.
The occupied nodes induce a subgraph.
When the largest component of this subgraph spans the whole original graph, the
system is said to percolate.
The notion of such a spanning cluster is straightforward in regular lattices:
it either extends from one boundary to the opposite boundary, or wraps around
the whole system if there are no boundaries (e.g. periodic boundary
conditions).

In bond percolation problems, each edge of the graph is either “occupied” or
“empty”.
The occupied edges induce a subgraph.
(A variant is to consider an edge either to exist or not, and consider the
resulting graph.)
As in site percolation, the system is said to percolate if the largest
component (cluster) of this subgraph extends across the whole original graph.

In Bernoulli percolation problems, let it be either site or bond percolation,
each site or bond is independently occupied with a probability \(p\).
This is a paradigm of percolation theory.
As the number of configurations grow exponentially with system size, one
resorts to Monte Carlo simulation: that is, sampling the space of all
configurations and computing the statistics from these samples.
In order to numerically trace the percolation transition with finite-size
scaling analysis, one needs to simulate several realizations (samples, runs)
over a range of increasing system sizes and sufficiently many values of the
order paramater \(p\) in the critical region.
This entails simulating independent runs for almost arbitrarily close values of
\(p\) in high-resolution studies.
While the computation time grows linearly with resolution, accuracy does not.
The intrinsic variance of the statistics at two adjacent values of \(p\),
due to the independence of runs, dominates the difference caused by the
differing values of \(p\).

The identification of clusters in any given configuration conventionally takes
\(\mathcal{O}(N)\) time, which amounts to the overall
\(\mathcal{O}(N^2)\) time requirement.




From microcanonical to canonical statistics

In their 2001 paper, Neman & Ziff point out the following
[NZ01].
The order parameter \(p\) is originally defined microscopically as the
occupation probability.
However, and consequently, it is also the macroscopic average occupation ratio.
This is a weighted average over all configurations (microstates).
Their weight is of course determined by the microscopic occupation probability
\(p\).
Each such microstate has a fixed occupation number \(n\).
All configurations at a fixed \(n\) constitute the microcanonical
ensemble at that number.
Weighting and averaging over a statistic of each microcanonical ensemble yields
the canonical average of that statistic.
Newman & Ziff refer to this thermodynamic analogy, where \(p\) plays the
role of temperature, and the occupation number \(n\) the role of the energy
of a microstate.

First, we sample all microcanonical ensembles (for each occupation number
\(n\)), and compute the cluster statistic of interest.
Then, we convolve the resulting microcanonical averages with their weights in
the canonical ensemble of a given value of \(p\).
This yields the canonical average of the statistic at that value of \(p\).
This procedure enables us to compute the cluster statistics at an arbitrary
resolution of the order parameter \(p\) from the precomputed microcanonical
averages.

For bond percolation, the probability that \(n\) out of a total of
\(M\) bonds are occupied at occupation probability \(p\) is the
binomial probability mass function ([NZ01], Equation 1):


\[B(M,n,p) = \binom{M}{n} p^n (1 - p)^{M-n}.\]

A microcanonical statistic \(\{Q_m\}\) measured at each occupation number
\(m\) transforms into the canonical average \(Q(p)\) for occupation
probability \(p\) according to the convolution ([NZ01],
Equation 2):


\[Q(p) = \sum_{m=0}^M B(M,m,p)Q_m\]




Common Random Numbers and incremental cluster detection

At the core of the Newman-Ziff algorithm is the incremental evolution of a set
of sample states (realizations) by successively adding bonds to an initially
empty lattice.
Specifically, a sample state with \(n + 1\) occupied bonds derives from a
sample state with \(n\) occupied bonds and one additional bond.
Instead of identifying the clusters for \(n + 1\) from scratch, it takes
only little effort to derive the clusters from the previous configuration with
\(n\) occupied bonds.
As a result, the overall time complexity of the algorithm reduces to
\(\mathcal{O}(N)\).

A convenient side effect is that this method effectively employs the variance
reduction technique of common random numbers for runs across all occupation
numbers \(n\).
Different realizations, or run, still remain independent, which is all we need.
At the same time, fluctuations solely due to using different realizations when
changing the occupation number \(n\), or, ultimately, the occupation
probability \(p\), now remain absent from the statistics.

Starting each run with a lattice with all \(M\) bonds empty, we
successively add a bond to each configuration.
Addings bonds is random, but in a predetermined random permutation.
Each new bond might either join two sites from different clusters, resulting in
the merger of these two clusters, or the new bond joins two sites of the same
cluster.
Keeping track of this merging of clusters is taken care of by a weighted
union/find algorithm with path compression (see [NZ01] and
references therein).

In order to detect a percolating, spanning cluster, we introduce auxiliary
nodes to the graph, see [NZ01], Section II.D and Figure 6.
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A Python Implementation of the Newman–Ziff algorithm

The pypercolate Python package implements the Newman–Ziff algorithm for bond
percolation on graphs.

The elementary unit of computation is the sample state:
This is one particular realization with a given number of edges—one member of
the microcanonical ensemble.
As Newman & Ziff suggest [NZ01], the package evolves a sample
state by successively adding edges, in a random but predetermined order.
This is implemented as a generator function
percolate.percolate.sample_states() to iterate over.
Each step of the iteration adds one edge.

A collection of sample states (realizations) evolved in parallel form a
microcanonical ensemble at each iteration step.
A microcanonical ensemble is hence a collection of different sample states
(realizations) but with the same number of edges (occupation number).
The percolate.percolate.microcanonical_averages() generator function
evolves a microcanonical ensemble.
At each step, it calculates the cluster statistics over all realizations in the
ensemble.
The percolate.percolate.microcanonical_averages_arrays() helper function
collects these statistics over all iteration steps into single numpy arrays.

Finally, the percolate.percolate.canonical_averages() function calculates
the statistics of the canonical ensemble from the microcanonical ensembles.

The percolate.percolate.sample_states() generator handles cluster joining
by the networkx.utils.union_find.UnionFind [http://networkx.github.io/documentation/latest/reference/generated/networkx.utils.union_find.UnionFind.union.html#networkx.utils.union_find.UnionFind.union] data structure.
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Developer Guide


	Repository: github.com/andsor/pypercolate [http://github.com/andsor/pypercolate]

	Bibliography: www.citeulike.org/group/19226 [http://www.citeulike.org/group/19226]




Development environment

Use tox [http://tox.testrun.org] to prepare virtual environments for development [http://testrun.org/tox/latest/example/devenv.html>].

To set up a Python 2.7 environment in .devenv27, run:

$ tox -e devenv27





To set up a Python 3.4 environment in .devenv34, run:

$ tox -e devenv34








Packaging

This package uses setuptools [http://pythonhosted.org/setuptools].

Run

$ python setup.py sdist





or

$ python setup.py bdist





or

$ python setup.py bdist_wheel





to build a source, binary or wheel distribution.




Complete Git Integration

Your project is already an initialised Git repository and setup.py uses the
information of tags to infer the version of your project with the help of
versioneer [https://github.com/warner/python-versioneer].

To use this feature you need to tag with the format
vMAJOR.MINOR[.REVISION], e.g. v0.0.1 or v0.1.
The prefix v is needed!

Run

$ python setup.py version





to retrieve the current PEP440 [http://www.python.org/dev/peps/pep-0440]-compliant version.
This version will be used when building a package and is also accessible
through percolate.__version__.
The version will be unknown until you have added a first tag.




Sphinx Documentation

This project follows the NumPy documentation style [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt].

Build the documentation with

$ python setup.py docs





and run doctests with

$ python setup.py doctest





Alternatively, let tox [http://tox.testrun.org]
configure the virtual environment and run sphinx [http://tox.readthedocs.org/en/latest/example/general.html#integrating-sphinx-documentation-checks]:

$ tox -e docs





Add further options separated from tox options by a double dash --:

$ tox -e docs -- --help





Start editing the file docs/index.rst to extend the
documentation.

Add requirements [http://pip.readthedocs.org/en/latest/user_guide.html#requirements-files] for building the documentation to the
doc-requirements.txt file.


Uploading documentation to GitHub pages

Run:

$ ghp-import -n -p docs/_build/html





or:

$ doit upload_doc





to upload the built HTML documentation to GitHub pages.






Continuous documentation building

For continuously building the documentation during development, run:

$ tox -e autodocs








Unittest & Coverage

Run

$ python setup.py test





to run all unittests defined in the subfolder test with the help of tox [http://tox.testrun.org]
and py.test [http://pytest.org].

The py.test plugin pytest-cov [http://github.com/schlamar/pytest-cov] is used to automatically generate a coverage
report.




Continuous testing

For continuous testing in a Python 2.7 environment, run:

$ python setup.py test --tox-args='-c toxdev.ini -e py27'





For continuous testing in a Python 3.4 environment, run:

$ python setup.py test --tox-args='-c toxdev.ini -e py34'








Requirements Management

Add requirements [http://pip.readthedocs.org/en/latest/user_guide.html#requirements-files] to the requirements.txt file which
will be automatically used by setup.py.




Bibliography

A CiteULike group [http://www.citeulike.org/group/19226] manages the bibliography.

To download the bibliography, run

$ doit download_bib
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The percolate module

Implements the Newman-Ziff algorithm for Monte Carlo simulation of percolation

This module implements the Newman-Ziff algorithm for Monte Carlo simulation of
Bernoulli percolation on arbitrary graphs.

The percolate module provides these high-level functions from the
percolate.percolate module:







	percolate.sample_states(graph[,...])
	Generate successive sample states of the percolation model


	percolate.single_run_arrays([spanning_cluster])
	Generate statistics for a single run


	percolate.microcanonical_averages(graph[,...])
	Generate successive microcanonical percolation ensemble averages


	percolate.microcanonical_averages_arrays(...)
	Compile microcanonical averages over all iteration steps into single arrays


	percolate.canonical_averages(ps,...)
	Compute the canonical cluster statistics from microcanonical statistics


	percolate.spanning_1d_chain(length)
	Generate a linear chain with auxiliary nodes for spanning cluster detection


	percolate.spanning_2d_grid(length)
	Generate a square lattice with auxiliary nodes for spanning detection


	percolate.statistics(graph,ps[,...])
	Helper function to compute percolation statistics






See also


	percolate.percolate

	low-level functions





Notes

Currently, the module only implements bond percolation.
Spanning cluster detection is implemented, but wrapping detection is not.

The elementary unit of computation is the sample state:
This is one particular realization with a given number of edges—one member of
the microcanonical ensemble.
As Newman & Ziff suggest [1], the module evolves a sample state by
successively adding edges, in a random but predetermined order.
This is implemented as a generator function sample_states() to iterate
over.
Each step of the iteration adds one edge.

A collection of sample states (realizations) evolved in parallel form a
microcanonical ensemble at each iteration step.
A microcanonical ensemble is hence a collection of different sample states
(realizations) but with the same number of edges (occupation number).
The microcanonical_averages() generator function evolves a microcanonical
ensemble.
At each step, it calculates the cluster statistics over all realizations in the
ensemble.
The microcanonical_averages_arrays() helper function collects these
statistics over all iteration steps into single numpy arrays.

Finally, the canonical_averages() function calculates the statistics of
the canonical ensemble from the microcanonical ensembles.

References




	[1]	Newman, M. E. J. & Ziff, R. M. Fast monte carlo algorithm for site
or bond percolation. Physical Review E 64, 016706+ (2001),
10.1103/physreve.64.016706 [http://dx.doi.org/10.1103/physreve.64.016706]





Todo

Implement site percolation [https://github.com/andsor/pypercolate/issues/5]




Todo

Implement wrapping detection [https://github.com/andsor/pypercolate/issues/6]
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The percolate.percolate module

Low-level routines to implement the Newman-Ziff algorithm


See also


	percolate

	The high-level module






	
percolate.percolate._binomial_pmf(n, p)[source]

	Compute the binomial PMF according to Newman and Ziff

Helper function for canonical_averages()


See also

canonical_averages()



Notes

See Newman & Ziff, Equation (10) [10]

References




	[10]	Newman, M. E. J. & Ziff, R. M. Fast monte carlo algorithm for site
or bond percolation. Physical Review E 64, 016706+ (2001),
doi:10.1103/physreve.64.016706 [http://dx.doi.org/10.1103/physreve.64.016706].









	
percolate.percolate._microcanonical_average_max_cluster_size(max_cluster_size, alpha)[source]

	Compute the average size of the largest cluster

Helper function for microcanonical_averages()





	Parameters:	
	max_cluster_size (1-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of int) – Each entry is the max_cluster_size field of the output of
sample_states():
The size of the largest cluster (absolute number of sites).

	alpha (float [http://docs.python.org/2.7/library/functions.html#float]) – Significance level.






	Returns:	
	ret (dict) –
Largest cluster statistics

	ret[‘max_cluster_size’] (float) –
Average size of the largest cluster (absolute number of sites)

	ret[‘max_cluster_size_ci’] (1-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float, size 2) –
Lower and upper bounds of the normal confidence interval of the average
size of the largest cluster (absolute number of sites)












See also


	sample_states()

	largest cluster detection

	microcanonical_averages()

	largest cluster statistics










	
percolate.percolate._microcanonical_average_moments(moments, alpha)[source]

	Compute the average moments of the cluster size distributions

Helper function for microcanonical_averages()





	Parameters:	
	moments (2-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of int) – moments.shape[1] == 5`.
Each array ``moments[r, :] is the moments field of the output of
sample_states():
The k-th entry is the k-th raw moment of the (absolute) cluster
size distribution.

	alpha (float [http://docs.python.org/2.7/library/functions.html#float]) – Significance level.






	Returns:	
	ret (dict) –
Moment statistics

	ret[‘moments’] (1-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float, size 5) –
The k-th entry is the average k-th raw moment of the (absolute)
cluster size distribution, with k ranging from 0 to 4.

	ret[‘moments_ci’] (2-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float, shape (5,2)) –
ret['moments_ci'][k] are the lower and upper bounds of the normal
confidence interval of the average k-th raw moment of the
(absolute) cluster size distribution, with k ranging from 0 to
4.












See also


	sample_states()

	computation of moments

	microcanonical_averages()

	moment statistics










	
percolate.percolate._microcanonical_average_spanning_cluster(has_spanning_cluster, alpha)[source]

	Compute the average number of runs that have a spanning cluster

Helper function for microcanonical_averages()





	Parameters:	
	has_spanning_cluster (1-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of bool) – Each entry is the has_spanning_cluster field of the output of
sample_states():
An entry is True if there is a spanning cluster in that respective
run, and False otherwise.

	alpha (float [http://docs.python.org/2.7/library/functions.html#float]) – Significance level.






	Returns:	
	ret (dict) –
Spanning cluster statistics

	ret[‘spanning_cluster’] (float) –
The average relative number (Binomial proportion) of runs that have a
spanning cluster.
This is the Bayesian point estimate of the posterior mean, with a
uniform prior.

	ret[‘spanning_cluster_ci’] (1-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float, size 2) –
The lower and upper bounds of the Binomial proportion confidence
interval with uniform prior.












See also


	sample_states()

	spanning cluster detection

	microcanonical_averages()

	spanning cluster statistics





Notes

Averages and confidence intervals for Binomial proportions

As Cameron [8] puts it, the normal approximation to the confidence
interval for a Binomial proportion \(p\) “suffers a systematic
decline in performance (...) towards extreme values of \(p\) near
\(0\) and \(1\), generating binomial [confidence intervals]
with effective coverage far below the desired level.” (see also
References [6] and [7]).

A different approach to quantifying uncertainty is Bayesian inference.
[5]
For \(n\) independent Bernoulli trails with common success
probability \(p\), the likelihood to have \(k\) successes
given \(p\) is the binomial distribution


\[P(k|p) = \binom{n}{k} p^k (1-p)^{n-k} \equiv B(a,b),\]

where \(B(a, b)\) is the Beta distribution with parameters
\(a = k + 1\) and \(b = n - k + 1\).
Assuming a uniform prior \(P(p) = 1\), the posterior is [5]


\[P(p|k) = P(k|p)=B(a,b).\]

A point estimate is the posterior mean


\[\bar{p} = \frac{k+1}{n+2}\]

with the \(1 - \alpha\) credible interval \((p_l, p_u)\) given
by


\[\int_0^{p_l} dp B(a,b) = \int_{p_u}^1 dp B(a,b) = \frac{\alpha}{2}.\]

References




	[5]	(1, 2) Wasserman, L. All of Statistics (Springer New York, 2004),
doi:10.1007/978-0-387-21736-9 [http://dx.doi.org/10.1007/978-0-387-21736-9].







	[6]	DasGupta, A., Cai, T. T. & Brown, L. D. Interval Estimation for a
Binomial Proportion. Statistical Science 16, 101-133 (2001).
doi:10.1214/ss/1009213286 [http://dx.doi.org/10.1214/ss/1009213286].







	[7]	Agresti, A. & Coull, B. A. Approximate is Better than “Exact” for
Interval Estimation of Binomial Proportions. The American Statistician
52, 119-126 (1998),
doi:10.2307/2685469 [http://dx.doi.org/10.2307/2685469].







	[8]	Cameron, E. On the Estimation of Confidence Intervals for Binomial
Population Proportions in Astronomy: The Simplicity and Superiority of
the Bayesian Approach. Publications of the Astronomical Society of
Australia 28, 128-139 (2011),
doi:10.1071/as10046 [http://dx.doi.org/10.1071/as10046].









	
percolate.percolate.alpha_1sigma = 0.31731050786291415

	The alpha for the 1 sigma confidence level






	
percolate.percolate.canonical_averages(ps, microcanonical_averages_arrays)[source]

	Compute the canonical cluster statistics from microcanonical statistics

This is according to Newman and Ziff, Equation (2).
Note that we also simply average the bounds of the confidence intervals
according to this formula.





	Parameters:	
	ps (iterable of float) – Each entry is a probability for which to form the canonical ensemble
and compute the weighted statistics from the microcanonical statistics

	microcanonical_averages_arrays – Typically the output of microcanonical_averages_arrays()






	Returns:	
	ret (dict) –
Canonical ensemble cluster statistics

	ret[‘ps’] (iterable of float) –
The parameter ps

	ret[‘N’] (int) –
Total number of sites

	ret[‘M’] (int) –
Total number of bonds

	ret[‘spanning_cluster’] (1-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float) –
The percolation probability:
The normalized average number of runs that have a spanning cluster.

	ret[‘spanning_cluster_ci’] (2-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float, size 2) –
The lower and upper bounds of the percolation probability.

	ret[‘max_cluster_size’] (1-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float) –
The percolation strength:
Average relative size of the largest cluster

	ret[‘max_cluster_size_ci’] (2-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float) –
Lower and upper bounds of the normal confidence interval of the
percolation strength.

	ret[‘moments’] (2-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float, shape (5, M + 1)) –
Average raw moments of the (relative) cluster size distribution.

	ret[‘moments_ci’] (3-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float, shape (5, M + 1, 2)) –
Lower and upper bounds of the normal confidence interval of the raw
moments of the (relative) cluster size distribution.












See also

microcanonical_averages(), microcanonical_averages_arrays()








	
percolate.percolate.microcanonical_averages(graph, runs=40, spanning_cluster=True, model=u'bond', alpha=0.31731050786291415, copy_result=True)[source]

	Generate successive microcanonical percolation ensemble averages

This is a generator function [http://docs.python.org/2.7/tutorial/classes.html#tut-generators] to successively
add one edge at a time from the graph to the percolation model for a number
of independent runs in parallel.
At each iteration, it calculates and returns the averaged cluster
statistics.





	Parameters:	
	graph (networkx.Graph [http://networkx.github.io/documentation/latest/reference/classes.graph.html#networkx.Graph]) – The substrate graph on which percolation is to take place

	runs (int, optional) – Number of independent runs.
Defaults to 40.

	spanning_cluster (bool, optional) – Defaults to True.

	model (str, optional) – The percolation model (either 'bond' or 'site').
Defaults to 'bond'.


Note

Other models than 'bond' are not supported yet.





	alpha (float, optional) – Significance level.
Defaults to 1 sigma of the normal distribution.
1 - alpha is the confidence level.

	copy_result (bool, optional) – Whether to return a copy or a reference to the result dictionary.
Defaults to True.






	Yields:	
	ret (dict) –
Cluster statistics

	ret[‘n’] (int) –
Number of occupied bonds

	ret[‘N’] (int) –
Total number of sites

	ret[‘M’] (int) –
Total number of bonds

	ret[‘spanning_cluster’] (float) –
The average number (Binomial proportion) of runs that have a spanning
cluster.
This is the Bayesian point estimate of the posterior mean, with a
uniform prior.
Only exists if spanning_cluster is set to True.

	ret[‘spanning_cluster_ci’] (1-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float, size 2) –
The lower and upper bounds of the Binomial proportion confidence
interval with uniform prior.
Only exists if spanning_cluster is set to True.

	ret[‘max_cluster_size’] (float) –
Average size of the largest cluster (absolute number of sites)

	ret[‘max_cluster_size_ci’] (1-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float, size 2) –
Lower and upper bounds of the normal confidence interval of the average
size of the largest cluster (absolute number of sites)

	ret[‘moments’] (1-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float, size 5) –
The k-th entry is the average k-th raw moment of the (absolute)
cluster size distribution, with k ranging from 0 to 4.

	ret[‘moments_ci’] (2-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float, shape (5,2)) –
ret['moments_ci'][k] are the lower and upper bounds of the normal
confidence interval of the average k-th raw moment of the
(absolute) cluster size distribution, with k ranging from 0 to
4.






	Raises:	
	ValueError –
If runs is not a positive integer

	ValueError –
If alpha is not a float in the interval (0, 1)










See also

sample_states(), percolate.percolate._microcanonical_average_spanning_cluster(), percolate.percolate._microcanonical_average_max_cluster_size()



Notes

Iterating through this generator corresponds to several parallel runs of
the Newman-Ziff algorithm.
Each iteration yields a microcanonical percolation ensemble for the number
\(n\) of occupied bonds. [9]
The first iteration yields the trivial microcanonical percolation ensemble
with \(n = 0\) occupied bonds.

Spanning cluster



See also

sample_states()






Raw moments of the cluster size distribution



See also

sample_states()






References




	[9]	Newman, M. E. J. & Ziff, R. M. Fast monte carlo algorithm for site
or bond percolation. Physical Review E 64, 016706+ (2001),
doi:10.1103/physreve.64.016706 [http://dx.doi.org/10.1103/physreve.64.016706].









	
percolate.percolate.microcanonical_averages_arrays(microcanonical_averages)[source]

	Compile microcanonical averages over all iteration steps into single arrays

Helper function to aggregate the microcanonical averages over all iteration
steps into single arrays for further processing





	Parameters:	microcanonical_averages (iterable) – Typically, this is the microcanonical_averages() generator


	Returns:	
	ret (dict) –
Aggregated cluster statistics

	ret[‘N’] (int) –
Total number of sites

	ret[‘M’] (int) –
Total number of bonds

	ret[‘spanning_cluster’] (1-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float) –
The percolation probability:
The normalized average number of runs that have a spanning cluster.

	ret[‘spanning_cluster_ci’] (2-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float, size 2) –
The lower and upper bounds of the percolation probability.

	ret[‘max_cluster_size’] (1-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float) –
The percolation strength:
Average relative size of the largest cluster

	ret[‘max_cluster_size_ci’] (2-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float) –
Lower and upper bounds of the normal confidence interval of the
percolation strength.

	ret[‘moments’] (2-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float, shape (5, M + 1)) –
Average raw moments of the (relative) cluster size distribution.

	ret[‘moments_ci’] (3-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float, shape (5, M + 1, 2)) –
Lower and upper bounds of the normal confidence interval of the raw
moments of the (relative) cluster size distribution.










See also

microcanonical_averages()








	
percolate.percolate.sample_states(graph, spanning_cluster=True, model=u'bond', copy_result=True)[source]

	Generate successive sample states of the percolation model

This is a generator function [http://docs.python.org/2.7/tutorial/classes.html#tut-generators] to successively
add one edge at a time from the graph to the percolation model.
At each iteration, it calculates and returns the cluster statistics.





	Parameters:	
	graph (networkx.Graph [http://networkx.github.io/documentation/latest/reference/classes.graph.html#networkx.Graph]) – The substrate graph on which percolation is to take place

	spanning_cluster (bool, optional) – Whether to detect a spanning cluster or not.
Defaults to True.

	model (str, optional) – The percolation model (either 'bond' or 'site').
Defaults to 'bond'.


Note

Other models than 'bond' are not supported yet.





	copy_result (bool, optional) – Whether to return a copy or a reference to the result dictionary.
Defaults to True.






	Yields:	
	ret (dict) –
Cluster statistics

	ret[‘n’] (int) –
Number of occupied bonds

	ret[‘N’] (int) –
Total number of sites

	ret[‘M’] (int) –
Total number of bonds

	ret[‘has_spanning_cluster’] (bool) –
True if there is a spanning cluster, False otherwise.
Only exists if spanning_cluster argument is set to True.

	ret[‘max_cluster_size’] (int) –
Size of the largest cluster (absolute number of sites)

	ret[‘moments’] (1-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of int) –
Array of size 5.
The k-th entry is the k-th raw moment of the (absolute) cluster
size distribution, with k ranging from 0 to 4.






	Raises:	
	ValueError –
If model does not equal 'bond'.

	ValueError –
If spanning_cluster is True, but graph does not contain any
auxiliary nodes to detect spanning clusters.










See also


	microcanonical_averages()

	Evolves multiple sample states in parallel





Notes

Iterating through this generator is a single run of the Newman-Ziff
algorithm. [2]
The first iteration yields the trivial state with \(n = 0\) occupied
bonds.

Spanning cluster


In order to detect a spanning cluster, graph needs to contain
auxiliary nodes and edges, cf. Reference [2], Figure 6.
The auxiliary nodes and edges have the 'span' attribute [http://networkx.github.io/documentation/latest/tutorial/tutorial.html#node-attributes].
The value is either 0 or 1, distinguishing the two sides of the
graph to span.


Raw moments of the cluster size distribution


The \(k\)-th raw moment of the (absolute) cluster size distribution
is \(\sum_s' s^k N_s\), where \(s\) is the cluster size and
\(N_s\) is the number of clusters of size \(s\). [3]
The primed sum \(\sum'\) signifies that the largest cluster is
excluded from the sum. [4]


References




	[2]	(1, 2) Newman, M. E. J. & Ziff, R. M. Fast monte carlo algorithm for site
or bond percolation. Physical Review E 64, 016706+ (2001),
doi:10.1103/physreve.64.016706 [http://dx.doi.org/10.1103/physreve.64.016706].







	[3]	Stauffer, D. & Aharony, A. Introduction to Percolation Theory (Taylor &
Francis, London, 1994), second edn.







	[4]	Binder, K. & Heermann, D. W. Monte Carlo Simulation in Statistical
Physics (Springer, Berlin, Heidelberg, 2010),
doi:10.1007/978-3-642-03163-2 [http://dx.doi.org/10.1007/978-3-642-03163-2].









	
percolate.percolate.single_run_arrays(spanning_cluster=True, **kwargs)[source]

	Generate statistics for a single run

This is a stand-alone helper function to evolve a single sample state
(realization) and return the cluster statistics.





	Parameters:	
	spanning_cluster (bool, optional) – Whether to detect a spanning cluster or not.
Defaults to True.

	kwargs (keyword arguments) – Piped through to sample_states()






	Returns:	
	ret (dict) –
Cluster statistics

	ret[‘N’] (int) –
Total number of sites

	ret[‘M’] (int) –
Total number of bonds

	ret[‘max_cluster_size’] (1-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of int, size ret['M'] + 1) –
Array of the sizes of the largest cluster (absolute number of sites) at
the respective occupation number.

	ret[‘has_spanning_cluster’] (1-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of bool, size ret['M'] + 1) –
Array of booleans for each occupation number.
The respective entry is True if there is a spanning cluster,
False otherwise.
Only exists if spanning_cluster argument is set to True.

	ret[‘moments’] (2-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of int) –
Array of shape (5, ret['M'] + 1).
The (k, m)-th entry is the k-th raw moment of the (absolute)
cluster size distribution, with k ranging from 0 to 4, at
occupation number m.












See also

sample_states()








	
percolate.percolate.spanning_1d_chain(length)[source]

	Generate a linear chain with auxiliary nodes for spanning cluster detection





	Parameters:	length (int [http://docs.python.org/2.7/library/functions.html#int]) – Number of nodes in the chain, excluding the auxiliary nodes.


	Returns:	A linear chain graph with auxiliary nodes for spanning cluster detection


	Return type:	networkx.Graph [http://networkx.github.io/documentation/latest/reference/classes.graph.html#networkx.Graph]






See also


	sample_states()

	spanning cluster detection










	
percolate.percolate.spanning_2d_grid(length)[source]

	Generate a square lattice with auxiliary nodes for spanning detection





	Parameters:	length (int [http://docs.python.org/2.7/library/functions.html#int]) – Number of nodes in one dimension, excluding the auxiliary nodes.


	Returns:	A square lattice graph with auxiliary nodes for spanning cluster
detection


	Return type:	networkx.Graph [http://networkx.github.io/documentation/latest/reference/classes.graph.html#networkx.Graph]






See also


	sample_states()

	spanning cluster detection










	
percolate.percolate.statistics(graph, ps, spanning_cluster=True, model=u'bond', alpha=0.31731050786291415, runs=40)[source]

	Helper function to compute percolation statistics


See also

canonical_averages(), microcanonical_averages(), sample_states()











          

      

      

    


    
    

  

    
      Navigation

      
        	
          previous

        	pypercolate 
 
      

    


    
      
          
            
  
Bibliography






	[AC98]	Alan Agresti and BrentA. Coull. Approximate Is Better than “Exact” for Interval Estimation of Binomial Proportions. The American Statistician, 52(2):119–126, 1998. URL: http://dx.doi.org/10.2307/2685469, doi:10.2307/2685469 [http://dx.doi.org/10.2307/2685469].







	[BH10]	Kurt Binder and DieterW. Heermann. Monte Carlo Simulation in Statistical Physics. Springer, Berlin, Heidelberg, 2010. URL: http://dx.doi.org/10.1007/978-3-642-03163-2, doi:10.1007/978-3-642-03163-2 [http://dx.doi.org/10.1007/978-3-642-03163-2].







	[BH57]	S.R. Broadbent and J.M. Hammersley. Percolation processes. I. Crystals and mazes. Mathematical Proceedings of the Cambridge Philosophical Society, 53(03):629–641, July 1957. URL: http://dx.doi.org/10.1017/s0305004100032680, doi:10.1017/s0305004100032680 [http://dx.doi.org/10.1017/s0305004100032680].







	[Cam11]	Ewan Cameron. On the Estimation of Confidence Intervals for Binomial Population Proportions in Astronomy: The Simplicity and Superiority of the Bayesian Approach. Publications of the Astronomical Society of Australia, 28:128–139, 2011. URL: http://dx.doi.org/10.1071/as10046, doi:10.1071/as10046 [http://dx.doi.org/10.1071/as10046].







	[DCB01]	Anirban DasGupta, TonyT. Cai, and LawrenceD. Brown. Interval Estimation for a Binomial Proportion. Statistical Science, 16(2):101–133, 2001. URL: http://dx.doi.org/10.1214/ss/1009213286, doi:10.1214/ss/1009213286 [http://dx.doi.org/10.1214/ss/1009213286].







	[Fis67]	MichaelE. Fisher. The theory of condensation and the critical point. Physics, 3(5):255+, 1967.







	[Flo41]	PaulJ. Flory. Molecular Size Distribution in Three Dimensional Polymers. I. Gelation. Journal of the American Chemical Society, 63(11):3083–3090, 1941. URL: http://dx.doi.org/10.1021/ja01856a061, doi:10.1021/ja01856a061 [http://dx.doi.org/10.1021/ja01856a061].







	[HEG14]	Allen Hunt, Robert Ewing, and Behzad Ghanbarian. Percolation Theory for Flow in Porous Media. volume 880 of Lecture Notes in Physics. Springer, Cham, Switzerland, third edition, 2014. URL: http://dx.doi.org/10.1007/978-3-319-03771-4, doi:10.1007/978-3-319-03771-4 [http://dx.doi.org/10.1007/978-3-319-03771-4].







	[NZ01]	M.E.J. Newman and R.M. Ziff. Fast monte carlo algorithm for site or bond percolation. Physical Review E, 64(1):016706+, 2001. URL: http://dx.doi.org/10.1103/physreve.64.016706, arXiv:cond-mat/0101295 [http://arxiv.org/abs/cond-mat/0101295], doi:10.1103/physreve.64.016706 [http://dx.doi.org/10.1103/physreve.64.016706].







	[Sta79]	D.Stauffer. Scaling theory of percolation clusters. Physics Reports, 54(1):1–74, 1979. URL: http://dx.doi.org/10.1016/0370-1573(79)90060-7, doi:10.1016/0370-1573(79)90060-7 [http://dx.doi.org/10.1016/0370-1573(79)90060-7].







	[SA94]	Dietrich Stauffer and Amnon Aharony. Introduction to Percolation Theory. Taylor & Francis, London, second edition, 1994. URL: http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0748402535.







	[Sto43]	WalterH. Stockmayer. Theory of Molecular Size Distribution and Gel Formation in Branched-Chain Polymers. The Journal of Chemical Physics, 11(2):45–55, 1943. URL: http://dx.doi.org/10.1063/1.1723803, doi:10.1063/1.1723803 [http://dx.doi.org/10.1063/1.1723803].







	[Was04]	Larry Wasserman. All of Statistics. Springer New York, 2004. URL: http://dx.doi.org/10.1007/978-0-387-21736-9, doi:10.1007/978-0-387-21736-9 [http://dx.doi.org/10.1007/978-0-387-21736-9].








          

      

      

    


    
    

  _static/ajax-loader.gif





_static/comment-close.png





_static/up-pressed.png





_static/up.png





_static/down.png





_rst/modules.html


    
      Navigation


      
        		pypercolate »

 
      


    


    
      
          
            
  
percolate




		percolate package
		Subpackages
		percolate.test package
		Submodules


		percolate.test.test_percolate module


		Module contents














		Submodules


		percolate.percolate module


		Module contents

















          

      

      

    


    
    

  

_rst/percolate.html


    
      Navigation


      
        		pypercolate »

 
      


    


    
      
          
            
  
percolate package



Subpackages




		percolate.test package
		Submodules


		percolate.test.test_percolate module


		Module contents
















Submodules





percolate.percolate module


Low-level routines to implement the Newman-Ziff algorithm



See also



		percolate


		The high-level module








		
percolate.percolate.alpha_1sigma = 0.31731050786291415


		The alpha for the 1 sigma confidence level









		
percolate.percolate.canonical_averages(ps, microcanonical_averages_arrays)[source]


		Compute the canonical cluster statistics from microcanonical statistics


This is according to Newman and Ziff, Equation (2).
Note that we also simply average the bounds of the confidence intervals
according to this formula.






		Parameters:		
		ps (iterable of float) – Each entry is a probability for which to form the canonical ensemble
and compute the weighted statistics from the microcanonical statistics


		microcanonical_averages_arrays – Typically the output of microcanonical_averages_arrays()









		Returns:		


		ret (dict) –
Canonical ensemble cluster statistics


		ret[‘ps’] (iterable of float) –
The parameter ps


		ret[‘N’] (int) –
Total number of sites


		ret[‘M’] (int) –
Total number of bonds


		ret[‘spanning_cluster’] (1-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float) –
The percolation probability:
The normalized average number of runs that have a spanning cluster.


		ret[‘spanning_cluster_ci’] (2-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float, size 2) –
The lower and upper bounds of the percolation probability.


		ret[‘max_cluster_size’] (1-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float) –
The percolation strength:
Average relative size of the largest cluster


		ret[‘max_cluster_size_ci’] (2-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float) –
Lower and upper bounds of the normal confidence interval of the
percolation strength.


		ret[‘moments’] (2-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float, shape (5, M + 1)) –
Average raw moments of the (relative) cluster size distribution.


		ret[‘moments_ci’] (3-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float, shape (5, M + 1, 2)) –
Lower and upper bounds of the normal confidence interval of the raw
moments of the (relative) cluster size distribution.

















See also


microcanonical_averages(), microcanonical_averages_arrays()











		
percolate.percolate.microcanonical_averages(graph, runs=40, spanning_cluster=True, model=u'bond', alpha=0.31731050786291415, copy_result=True)[source]


		Generate successive microcanonical percolation ensemble averages


This is a generator function [http://docs.python.org/2.7/tutorial/classes.html#tut-generators] to successively
add one edge at a time from the graph to the percolation model for a number
of independent runs in parallel.
At each iteration, it calculates and returns the averaged cluster
statistics.






		Parameters:		
		graph (networkx.Graph [http://networkx.github.io/documentation/latest/reference/classes.graph.html#networkx.Graph]) – The substrate graph on which percolation is to take place


		runs (int, optional) – Number of independent runs.
Defaults to 40.


		spanning_cluster (bool, optional) – Defaults to True.


		model (str, optional) – The percolation model (either 'bond' or 'site').
Defaults to 'bond'.



Note


Other models than 'bond' are not supported yet.







		alpha (float, optional) – Significance level.
Defaults to 1 sigma of the normal distribution.
1 - alpha is the confidence level.


		copy_result (bool, optional) – Whether to return a copy or a reference to the result dictionary.
Defaults to True.









		Yields:		
		ret (dict) –
Cluster statistics


		ret[‘n’] (int) –
Number of occupied bonds


		ret[‘N’] (int) –
Total number of sites


		ret[‘M’] (int) –
Total number of bonds


		ret[‘spanning_cluster’] (float) –
The average number (Binomial proportion) of runs that have a spanning
cluster.
This is the Bayesian point estimate of the posterior mean, with a
uniform prior.
Only exists if spanning_cluster is set to True.


		ret[‘spanning_cluster_ci’] (1-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float, size 2) –
The lower and upper bounds of the Binomial proportion confidence
interval with uniform prior.
Only exists if spanning_cluster is set to True.


		ret[‘max_cluster_size’] (float) –
Average size of the largest cluster (absolute number of sites)


		ret[‘max_cluster_size_ci’] (1-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float, size 2) –
Lower and upper bounds of the normal confidence interval of the average
size of the largest cluster (absolute number of sites)


		ret[‘moments’] (1-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float, size 5) –
The k-th entry is the average k-th raw moment of the (absolute)
cluster size distribution, with k ranging from 0 to 4.


		ret[‘moments_ci’] (2-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float, shape (5,2)) –
ret['moments_ci'][k] are the lower and upper bounds of the normal
confidence interval of the average k-th raw moment of the
(absolute) cluster size distribution, with k ranging from 0 to
4.









		Raises:		
		ValueError –
If runs is not a positive integer


		ValueError –
If alpha is not a float in the interval (0, 1)














See also


sample_states(), percolate.percolate._microcanonical_average_spanning_cluster(), percolate.percolate._microcanonical_average_max_cluster_size()




Notes


Iterating through this generator corresponds to several parallel runs of
the Newman-Ziff algorithm.
Each iteration yields a microcanonical percolation ensemble for the number
\(n\) of occupied bonds. [9]
The first iteration yields the trivial microcanonical percolation ensemble
with \(n = 0\) occupied bonds.


Spanning cluster




See also


sample_states()








Raw moments of the cluster size distribution




See also


sample_states()
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percolate.percolate.microcanonical_averages_arrays(microcanonical_averages)[source]


		Compile microcanonical averages over all iteration steps into single arrays


Helper function to aggregate the microcanonical averages over all iteration
steps into single arrays for further processing






		Parameters:		microcanonical_averages (iterable) – Typically, this is the microcanonical_averages() generator



		Returns:		
		ret (dict) –
Aggregated cluster statistics


		ret[‘N’] (int) –
Total number of sites


		ret[‘M’] (int) –
Total number of bonds


		ret[‘spanning_cluster’] (1-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float) –
The percolation probability:
The normalized average number of runs that have a spanning cluster.


		ret[‘spanning_cluster_ci’] (2-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float, size 2) –
The lower and upper bounds of the percolation probability.


		ret[‘max_cluster_size’] (1-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float) –
The percolation strength:
Average relative size of the largest cluster


		ret[‘max_cluster_size_ci’] (2-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float) –
Lower and upper bounds of the normal confidence interval of the
percolation strength.


		ret[‘moments’] (2-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float, shape (5, M + 1)) –
Average raw moments of the (relative) cluster size distribution.


		ret[‘moments_ci’] (3-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of float, shape (5, M + 1, 2)) –
Lower and upper bounds of the normal confidence interval of the raw
moments of the (relative) cluster size distribution.














See also


microcanonical_averages()











		
percolate.percolate.sample_states(graph, spanning_cluster=True, model=u'bond', copy_result=True)[source]


		Generate successive sample states of the percolation model


This is a generator function [http://docs.python.org/2.7/tutorial/classes.html#tut-generators] to successively
add one edge at a time from the graph to the percolation model.
At each iteration, it calculates and returns the cluster statistics.






		Parameters:		
		graph (networkx.Graph [http://networkx.github.io/documentation/latest/reference/classes.graph.html#networkx.Graph]) – The substrate graph on which percolation is to take place


		spanning_cluster (bool, optional) – Whether to detect a spanning cluster or not.
Defaults to True.


		model (str, optional) – The percolation model (either 'bond' or 'site').
Defaults to 'bond'.



Note


Other models than 'bond' are not supported yet.







		copy_result (bool, optional) – Whether to return a copy or a reference to the result dictionary.
Defaults to True.









		Yields:		
		ret (dict) –
Cluster statistics


		ret[‘n’] (int) –
Number of occupied bonds


		ret[‘N’] (int) –
Total number of sites


		ret[‘M’] (int) –
Total number of bonds


		ret[‘has_spanning_cluster’] (bool) –
True if there is a spanning cluster, False otherwise.
Only exists if spanning_cluster argument is set to True.


		ret[‘max_cluster_size’] (int) –
Size of the largest cluster (absolute number of sites)


		ret[‘moments’] (1-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of int) –
Array of size 5.
The k-th entry is the k-th raw moment of the (absolute) cluster
size distribution, with k ranging from 0 to 4.









		Raises:		
		ValueError –
If model does not equal 'bond'.


		ValueError –
If spanning_cluster is True, but graph does not contain any
auxiliary nodes to detect spanning clusters.














See also



		microcanonical_averages()


		Evolves multiple sample states in parallel







Notes


Iterating through this generator is a single run of the Newman-Ziff
algorithm. [2]
The first iteration yields the trivial state with \(n = 0\) occupied
bonds.


Spanning cluster



In order to detect a spanning cluster, graph needs to contain
auxiliary nodes and edges, cf. Reference [2], Figure 6.
The auxiliary nodes and edges have the 'span' attribute [http://networkx.github.io/documentation/latest/tutorial/tutorial.html#node-attributes].
The value is either 0 or 1, distinguishing the two sides of the
graph to span.



Raw moments of the cluster size distribution



The \(k\)-th raw moment of the (absolute) cluster size distribution
is \(\sum_s' s^k N_s\), where \(s\) is the cluster size and
\(N_s\) is the number of clusters of size \(s\). [3]
The primed sum \(\sum'\) signifies that the largest cluster is
excluded from the sum. [4]
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percolate.percolate.single_run_arrays(spanning_cluster=True, **kwargs)[source]


		Generate statistics for a single run


This is a stand-alone helper function to evolve a single sample state
(realization) and return the cluster statistics.






		Parameters:		
		spanning_cluster (bool, optional) – Whether to detect a spanning cluster or not.
Defaults to True.


		kwargs (keyword arguments) – Piped through to sample_states()









		Returns:		


		ret (dict) –
Cluster statistics


		ret[‘N’] (int) –
Total number of sites


		ret[‘M’] (int) –
Total number of bonds


		ret[‘max_cluster_size’] (1-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of int, size ret['M'] + 1) –
Array of the sizes of the largest cluster (absolute number of sites) at
the respective occupation number.


		ret[‘has_spanning_cluster’] (1-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of bool, size ret['M'] + 1) –
Array of booleans for each occupation number.
The respective entry is True if there is a spanning cluster,
False otherwise.
Only exists if spanning_cluster argument is set to True.


		ret[‘moments’] (2-D numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of int) –
Array of shape (5, ret['M'] + 1).
The (k, m)-th entry is the k-th raw moment of the (absolute)
cluster size distribution, with k ranging from 0 to 4, at
occupation number m.

















See also


sample_states()











		
percolate.percolate.spanning_1d_chain(length)[source]


		Generate a linear chain with auxiliary nodes for spanning cluster detection






		Parameters:		length (int [http://docs.python.org/2.7/library/functions.html#int]) – Number of nodes in the chain, excluding the auxiliary nodes.



		Returns:		A linear chain graph with auxiliary nodes for spanning cluster detection



		Return type:		networkx.Graph [http://networkx.github.io/documentation/latest/reference/classes.graph.html#networkx.Graph]








See also



		sample_states()


		spanning cluster detection














		
percolate.percolate.spanning_2d_grid(length)[source]


		Generate a square lattice with auxiliary nodes for spanning detection






		Parameters:		length (int [http://docs.python.org/2.7/library/functions.html#int]) – Number of nodes in one dimension, excluding the auxiliary nodes.



		Returns:		A square lattice graph with auxiliary nodes for spanning cluster
detection



		Return type:		networkx.Graph [http://networkx.github.io/documentation/latest/reference/classes.graph.html#networkx.Graph]








See also



		sample_states()


		spanning cluster detection














		
percolate.percolate.statistics(graph, ps, spanning_cluster=True, model=u'bond', alpha=0.31731050786291415, runs=40)[source]


		Helper function to compute percolation statistics



See also


canonical_averages(), microcanonical_averages(), sample_states()













Module contents


Implements the Newman-Ziff algorithm for Monte Carlo simulation of percolation


This module implements the Newman-Ziff algorithm for Monte Carlo simulation of
Bernoulli percolation on arbitrary graphs.


The percolate module provides these high-level functions from the
percolate.percolate module:








		percolate.sample_states(graph[, ...])
		Generate successive sample states of the percolation model



		percolate.single_run_arrays([spanning_cluster])
		Generate statistics for a single run



		percolate.microcanonical_averages(graph[, ...])
		Generate successive microcanonical percolation ensemble averages



		percolate.microcanonical_averages_arrays(...)
		Compile microcanonical averages over all iteration steps into single arrays



		percolate.canonical_averages(ps, ...)
		Compute the canonical cluster statistics from microcanonical statistics



		percolate.spanning_1d_chain(length)
		Generate a linear chain with auxiliary nodes for spanning cluster detection



		percolate.spanning_2d_grid(length)
		Generate a square lattice with auxiliary nodes for spanning detection



		percolate.statistics(graph, ps[, ...])
		Helper function to compute percolation statistics








See also



		percolate.percolate


		low-level functions







Notes


Currently, the module only implements bond percolation.
Spanning cluster detection is implemented, but wrapping detection is not.


The elementary unit of computation is the sample state:
This is one particular realization with a given number of edges—one member of
the microcanonical ensemble.
As Newman & Ziff suggest [1], the module evolves a sample state by
successively adding edges, in a random but predetermined order.
This is implemented as a generator function sample_states() to iterate
over.
Each step of the iteration adds one edge.


A collection of sample states (realizations) evolved in parallel form a
microcanonical ensemble at each iteration step.
A microcanonical ensemble is hence a collection of different sample states
(realizations) but with the same number of edges (occupation number).
The microcanonical_averages() generator function evolves a microcanonical
ensemble.
At each step, it calculates the cluster statistics over all realizations in the
ensemble.
The microcanonical_averages_arrays() helper function collects these
statistics over all iteration steps into single numpy arrays.


Finally, the canonical_averages() function calculates the statistics of
the canonical ensemble from the microcanonical ensembles.


References





		[1]		Newman, M. E. J. & Ziff, R. M. Fast monte carlo algorithm for site
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Todo


Implement site percolation [https://github.com/andsor/pypercolate/issues/5]





Todo


Implement wrapping detection [https://github.com/andsor/pypercolate/issues/6]
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  pypercolate is a scientific Python package that implements the Newman-Ziff
algorithm [http://arxiv.org/abs/cond-mat/0101295] for Monte Carlo simulation of percolation on graphs.


May 13, 2015 (Version )


Andreas Sorge <pypercolate@asorge.de>
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		Organization for Research on Complex Adaptive Systems, Göttingen, Germany
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  Source code for percolate.percolate

#!/usr/bin/env python
# encoding: utf-8

"""
Low-level routines to implement the Newman-Ziff algorithm

See also
--------

percolate : The high-level module
"""

from __future__ import (absolute_import, division,
                        print_function, unicode_literals)
from future.builtins import (ascii, bytes, chr, dict, filter, hex, input,
                             int, map, next, oct, open, pow, range, round,
                             str, super, zip)

import copy
import numpy as np
import scipy.stats
import networkx as nx


alpha_1sigma = 2 * scipy.stats.norm.cdf(-1.0)
"""
The alpha for the 1 sigma confidence level
"""


[docs]def sample_states(
    graph, spanning_cluster=True, model='bond', copy_result=True
):
    '''
    Generate successive sample states of the percolation model

    This is a :ref:`generator function <python:tut-generators>` to successively
    add one edge at a time from the graph to the percolation model.
    At each iteration, it calculates and returns the cluster statistics.

    Parameters
    ----------
    graph : networkx.Graph
        The substrate graph on which percolation is to take place

    spanning_cluster : bool, optional
        Whether to detect a spanning cluster or not.
        Defaults to ``True``.

    model : str, optional
        The percolation model (either ``'bond'`` or ``'site'``).
        Defaults to ``'bond'``.

        .. note:: Other models than ``'bond'`` are not supported yet.

    copy_result : bool, optional
        Whether to return a copy or a reference to the result dictionary.
        Defaults to ``True``.

    Yields
    ------
    ret : dict
        Cluster statistics

    ret['n'] : int
        Number of occupied bonds

    ret['N'] : int
        Total number of sites

    ret['M'] : int
        Total number of bonds

    ret['has_spanning_cluster'] : bool
        ``True`` if there is a spanning cluster, ``False`` otherwise.
        Only exists if `spanning_cluster` argument is set to ``True``.

    ret['max_cluster_size'] : int
        Size of the largest cluster (absolute number of sites)

    ret['moments'] : 1-D :py:class:`numpy.ndarray` of int
        Array of size ``5``.
        The ``k``-th entry is the ``k``-th raw moment of the (absolute) cluster
        size distribution, with ``k`` ranging from ``0`` to ``4``.

    Raises
    ------
    ValueError
        If `model` does not equal ``'bond'``.

    ValueError
        If `spanning_cluster` is ``True``, but `graph` does not contain any
        auxiliary nodes to detect spanning clusters.

    See also
    --------

    microcanonical_averages : Evolves multiple sample states in parallel

    Notes
    -----
    Iterating through this generator is a single run of the Newman-Ziff
    algorithm. [2]_
    The first iteration yields the trivial state with :math:`n = 0` occupied
    bonds.

    Spanning cluster

        In order to detect a spanning cluster, `graph` needs to contain
        auxiliary nodes and edges, cf. Reference [2]_, Figure 6.
        The auxiliary nodes and edges have the ``'span'`` `attribute
        <http://networkx.github.io/documentation/latest/tutorial/tutorial.html#node-attributes>`_.
        The value is either ``0`` or ``1``, distinguishing the two sides of the
        graph to span.

    Raw moments of the cluster size distribution

        The :math:`k`-th raw moment of the (absolute) cluster size distribution
        is :math:`\sum_s' s^k N_s`, where :math:`s` is the cluster size and
        :math:`N_s` is the number of clusters of size :math:`s`. [3]_
        The primed sum :math:`\sum'` signifies that the largest cluster is
        excluded from the sum. [4]_

    References
    ----------
    .. [2] Newman, M. E. J. & Ziff, R. M. Fast monte carlo algorithm for site
        or bond percolation. Physical Review E 64, 016706+ (2001),
        `doi:10.1103/physreve.64.016706 <http://dx.doi.org/10.1103/physreve.64.016706>`_.

    .. [3] Stauffer, D. & Aharony, A. Introduction to Percolation Theory (Taylor &
       Francis, London, 1994), second edn.

    .. [4] Binder, K. & Heermann, D. W. Monte Carlo Simulation in Statistical
       Physics (Springer, Berlin, Heidelberg, 2010),
       `doi:10.1007/978-3-642-03163-2 <http://dx.doi.org/10.1007/978-3-642-03163-2>`_.
    '''

    if model != 'bond':
        raise ValueError('Only bond percolation supported.')

    if spanning_cluster:
        auxiliary_node_attributes = nx.get_node_attributes(graph, 'span')
        auxiliary_nodes = auxiliary_node_attributes.keys()
        if not list(auxiliary_nodes):
            raise ValueError(
                'Spanning cluster is to be detected, but no auxiliary nodes '
                'given.'
            )

        spanning_sides = list(set(auxiliary_node_attributes.values()))
        if len(spanning_sides) != 2:
            raise ValueError(
                'Spanning cluster is to be detected, but auxiliary nodes '
                'of less or more than 2 types (sides) given.'
            )

        auxiliary_edge_attributes = nx.get_edge_attributes(graph, 'span')

    # get subgraph on which percolation is to take place (strip off the
    # auxiliary nodes)
    if spanning_cluster:
        perc_graph = graph.subgraph(
            [
                node for node in graph.nodes_iter()
                if 'span' not in graph.node[node]
            ]
        )
    else:
        perc_graph = graph

    # get a list of edges for easy access in later iterations
    perc_edges = perc_graph.edges()

    # number of nodes N
    num_nodes = nx.number_of_nodes(perc_graph)

    # number of edges M
    num_edges = nx.number_of_edges(perc_graph)

    # initial iteration: no edges added yet (n == 0)
    ret = dict()

    ret['n'] = 0
    ret['N'] = num_nodes
    ret['M'] = num_edges
    ret['max_cluster_size'] = 1
    ret['moments'] = np.ones(5) * (num_nodes - 1)

    if spanning_cluster:
        ret['has_spanning_cluster'] = False

    if copy_result:
        yield copy.deepcopy(ret)
    else:
        yield ret

    # permute edges
    perm_edges = np.random.permutation(num_edges)

    # set up disjoint set (union-find) data structure
    ds = nx.utils.union_find.UnionFind()
    if spanning_cluster:
        ds_spanning = nx.utils.union_find.UnionFind()

        # merge all auxiliary nodes for each side
        side_roots = dict()
        for side in spanning_sides:
            nodes = [
                node for (node, node_side) in auxiliary_node_attributes.items()
                if node_side is side
            ]
            ds_spanning.union(*nodes)
            side_roots[side] = ds_spanning[nodes[0]]

        for (edge, edge_side) in auxiliary_edge_attributes.items():
            ds_spanning.union(side_roots[edge_side], *edge)

        side_roots = [
            ds_spanning[side_root] for side_root in side_roots.values()
        ]

    # get first node
    max_cluster_root = next(perc_graph.nodes_iter())

    # loop over all edges (n == 1..M)
    for n in range(num_edges):
        ret['n'] = n + 1

        # draw new edge from permutation
        edge_index = perm_edges[n]
        edge = perc_edges[edge_index]
        ret['edge'] = edge

        # find roots and weights
        roots = [
            ds[node] for node in edge
        ]
        weights = [
            ds.weights[root] for root in roots
        ]

        if roots[0] is not roots[1]:
            # not same cluster: union!
            ds.union(*roots)
            if spanning_cluster:
                ds_spanning.union(*roots)

                ret['has_spanning_cluster'] = (
                    ds_spanning[side_roots[0]] == ds_spanning[side_roots[1]]
                )

            # find new root and weight
            root = ds[edge[0]]
            weight = ds.weights[root]

            # moments and maximum cluster size

            # deduct the previous sub-maximum clusters from moments
            for i in [0, 1]:
                if roots[i] is max_cluster_root:
                    continue
                ret['moments'] -= weights[i] ** np.arange(5)

            if max_cluster_root in roots:
                # merged with maximum cluster
                max_cluster_root = root
                ret['max_cluster_size'] = weight
            else:
                # merged previously sub-maximum clusters
                if ret['max_cluster_size'] >= weight:
                    # previously largest cluster remains largest cluster
                    # add merged cluster to moments
                    ret['moments'] += weight ** np.arange(5)
                else:
                    # merged cluster overtook previously largest cluster
                    # add previously largest cluster to moments
                    max_cluster_root = root
                    ret['moments'] += ret['max_cluster_size'] ** np.arange(5)
                    ret['max_cluster_size'] = weight

        if copy_result:
            yield copy.deepcopy(ret)
        else:
            yield ret



[docs]def single_run_arrays(spanning_cluster=True, **kwargs):
    r'''
    Generate statistics for a single run

    This is a stand-alone helper function to evolve a single sample state
    (realization) and return the cluster statistics.

    Parameters
    ----------
    spanning_cluster : bool, optional
        Whether to detect a spanning cluster or not.
        Defaults to ``True``.

    kwargs : keyword arguments
        Piped through to :func:`sample_states`

    Returns
    -------

    ret : dict
        Cluster statistics

    ret['N'] : int
        Total number of sites

    ret['M'] : int
        Total number of bonds

    ret['max_cluster_size'] : 1-D :py:class:`numpy.ndarray` of int, size ``ret['M'] + 1``
        Array of the sizes of the largest cluster (absolute number of sites) at
        the respective occupation number.

    ret['has_spanning_cluster'] : 1-D :py:class:`numpy.ndarray` of bool, size ``ret['M'] + 1``
        Array of booleans for each occupation number.
        The respective entry is ``True`` if there is a spanning cluster,
        ``False`` otherwise.
        Only exists if `spanning_cluster` argument is set to ``True``.

    ret['moments'] : 2-D :py:class:`numpy.ndarray` of int
        Array of shape ``(5, ret['M'] + 1)``.
        The ``(k, m)``-th entry is the ``k``-th raw moment of the (absolute)
        cluster size distribution, with ``k`` ranging from ``0`` to ``4``, at
        occupation number ``m``.

    See Also
    --------

    sample_states

    '''

    # initial iteration
    # we do not need a copy of the result dictionary since we copy the values
    # anyway
    kwargs['copy_result'] = False
    ret = dict()

    for n, state in enumerate(sample_states(
        spanning_cluster=spanning_cluster, **kwargs
    )):

        # merge cluster statistics
        if 'N' in ret:
            assert ret['N'] == state['N']
        else:
            ret['N'] = state['N']

        if 'M' in ret:
            assert ret['M'] == state['M']
        else:
            ret['M'] = state['M']
            number_of_states = state['M'] + 1
            max_cluster_size = np.empty(number_of_states)
            if spanning_cluster:
                has_spanning_cluster = np.empty(number_of_states, dtype=np.bool)
            moments = np.empty((5, number_of_states))

        max_cluster_size[n] = state['max_cluster_size']
        for k in range(5):
            moments[k, n] = state['moments'][k]
        if spanning_cluster:
            has_spanning_cluster[n] = state['has_spanning_cluster']

    ret['max_cluster_size'] = max_cluster_size
    ret['moments'] = moments
    if spanning_cluster:
        ret['has_spanning_cluster'] = has_spanning_cluster

    return ret



[docs]def _microcanonical_average_spanning_cluster(has_spanning_cluster, alpha):
    r'''
    Compute the average number of runs that have a spanning cluster

    Helper function for :func:`microcanonical_averages`

    Parameters
    ----------

    has_spanning_cluster : 1-D :py:class:`numpy.ndarray` of bool
        Each entry is the ``has_spanning_cluster`` field of the output of
        :func:`sample_states`:
        An entry is ``True`` if there is a spanning cluster in that respective
        run, and ``False`` otherwise.

    alpha : float
        Significance level.

    Returns
    -------

    ret : dict
        Spanning cluster statistics

    ret['spanning_cluster'] : float
        The average relative number (Binomial proportion) of runs that have a
        spanning cluster.
        This is the Bayesian point estimate of the posterior mean, with a
        uniform prior.

    ret['spanning_cluster_ci'] : 1-D :py:class:`numpy.ndarray` of float, size 2
        The lower and upper bounds of the Binomial proportion confidence
        interval with uniform prior.

    See Also
    --------

    sample_states : spanning cluster detection

    microcanonical_averages : spanning cluster statistics

    Notes
    -----

    Averages and confidence intervals for Binomial proportions

    As Cameron [8]_ puts it, the normal approximation to the confidence
    interval for a Binomial proportion :math:`p` "suffers a *systematic*
    decline in performance (...) towards extreme values of :math:`p` near
    :math:`0` and :math:`1`, generating binomial [confidence intervals]
    with effective coverage far below the desired level." (see also
    References [6]_ and [7]_).

    A different approach to quantifying uncertainty is Bayesian inference.
    [5]_
    For :math:`n` independent Bernoulli trails with common success
    probability :math:`p`, the *likelihood* to have :math:`k` successes
    given :math:`p` is the binomial distribution

    .. math::

        P(k|p) = \binom{n}{k} p^k (1-p)^{n-k} \equiv B(a,b),

    where :math:`B(a, b)` is the *Beta distribution* with parameters
    :math:`a = k + 1` and :math:`b = n - k + 1`.
    Assuming a uniform prior :math:`P(p) = 1`, the *posterior* is [5]_

    .. math::

        P(p|k) = P(k|p)=B(a,b).

    A point estimate is the posterior mean

    .. math::

        \bar{p} = \frac{k+1}{n+2}

    with the :math:`1 - \alpha` credible interval :math:`(p_l, p_u)` given
    by

    .. math::

        \int_0^{p_l} dp B(a,b) = \int_{p_u}^1 dp B(a,b) = \frac{\alpha}{2}.

    References
    ----------

    .. [5] Wasserman, L. All of Statistics (Springer New York, 2004),
       `doi:10.1007/978-0-387-21736-9 <http://dx.doi.org/10.1007/978-0-387-21736-9>`_.

    .. [6] DasGupta, A., Cai, T. T. & Brown, L. D. Interval Estimation for a
       Binomial Proportion. Statistical Science 16, 101-133 (2001).
       `doi:10.1214/ss/1009213286 <http://dx.doi.org/10.1214/ss/1009213286>`_.

    .. [7] Agresti, A. & Coull, B. A. Approximate is Better than "Exact" for
       Interval Estimation of Binomial Proportions. The American Statistician
       52, 119-126 (1998),
       `doi:10.2307/2685469 <http://dx.doi.org/10.2307/2685469>`_.

    .. [8] Cameron, E. On the Estimation of Confidence Intervals for Binomial
       Population Proportions in Astronomy: The Simplicity and Superiority of
       the Bayesian Approach. Publications of the Astronomical Society of
       Australia 28, 128-139 (2011),
       `doi:10.1071/as10046 <http://dx.doi.org/10.1071/as10046>`_.

    '''

    ret = dict()
    runs = has_spanning_cluster.size

    # Bayesian posterior mean for Binomial proportion (uniform prior)
    k = has_spanning_cluster.sum(dtype=np.float)
    ret['spanning_cluster'] = (
        (k + 1) / (runs + 2)
    )

    # Bayesian credible interval for Binomial proportion (uniform
    # prior)
    ret['spanning_cluster_ci'] = scipy.stats.beta.ppf(
        [alpha / 2, 1 - alpha / 2], k + 1, runs - k + 1
    )

    return ret



[docs]def _microcanonical_average_max_cluster_size(max_cluster_size, alpha):
    """
    Compute the average size of the largest cluster

    Helper function for :func:`microcanonical_averages`

    Parameters
    ----------

    max_cluster_size : 1-D :py:class:`numpy.ndarray` of int
        Each entry is the ``max_cluster_size`` field of the output of
        :func:`sample_states`:
        The size of the largest cluster (absolute number of sites).

    alpha: float
        Significance level.

    Returns
    -------

    ret : dict
        Largest cluster statistics

    ret['max_cluster_size'] : float
        Average size of the largest cluster (absolute number of sites)

    ret['max_cluster_size_ci'] : 1-D :py:class:`numpy.ndarray` of float, size 2
        Lower and upper bounds of the normal confidence interval of the average
        size of the largest cluster (absolute number of sites)

    See Also
    --------

    sample_states : largest cluster detection

    microcanonical_averages : largest cluster statistics
    """

    ret = dict()
    runs = max_cluster_size.size
    sqrt_n = np.sqrt(runs)

    max_cluster_size_sample_mean = max_cluster_size.mean()
    ret['max_cluster_size'] = max_cluster_size_sample_mean

    max_cluster_size_sample_std = max_cluster_size.std(ddof=1)
    if max_cluster_size_sample_std:
        old_settings = np.seterr(all='raise')
        ret['max_cluster_size_ci'] = scipy.stats.t.interval(
            1 - alpha,
            df=runs - 1,
            loc=max_cluster_size_sample_mean,
            scale=max_cluster_size_sample_std / sqrt_n
        )
        np.seterr(**old_settings)
    else:
        ret['max_cluster_size_ci'] = (
            max_cluster_size_sample_mean * np.ones(2)
        )

    return ret



[docs]def _microcanonical_average_moments(moments, alpha):
    """
    Compute the average moments of the cluster size distributions

    Helper function for :func:`microcanonical_averages`

    Parameters
    ----------

    moments : 2-D :py:class:`numpy.ndarray` of int
        ``moments.shape[1] == 5`.
        Each array ``moments[r, :]`` is the ``moments`` field of the output of
        :func:`sample_states`:
        The ``k``-th entry is the ``k``-th raw moment of the (absolute) cluster
        size distribution.

    alpha: float
        Significance level.

    Returns
    -------

    ret : dict
        Moment statistics

    ret['moments'] : 1-D :py:class:`numpy.ndarray` of float, size 5
        The ``k``-th entry is the average ``k``-th raw moment of the (absolute)
        cluster size distribution, with ``k`` ranging from ``0`` to ``4``.

    ret['moments_ci'] : 2-D :py:class:`numpy.ndarray` of float, shape (5,2)
        ``ret['moments_ci'][k]`` are the lower and upper bounds of the normal
        confidence interval of the average ``k``-th raw moment of the
        (absolute) cluster size distribution, with ``k`` ranging from ``0`` to
        ``4``.

    See Also
    --------

    sample_states : computation of moments

    microcanonical_averages : moment statistics
    """

    ret = dict()
    runs = moments.shape[0]
    sqrt_n = np.sqrt(runs)

    moments_sample_mean = moments.mean(axis=0)
    ret['moments'] = moments_sample_mean

    moments_sample_std = moments.std(axis=0, ddof=1)
    ret['moments_ci'] = np.empty((5, 2))
    for k in range(5):
        if moments_sample_std[k]:
            old_settings = np.seterr(all='raise')
            ret['moments_ci'][k] = scipy.stats.t.interval(
                1 - alpha,
                df=runs - 1,
                loc=moments_sample_mean[k],
                scale=moments_sample_std[k] / sqrt_n
            )
            np.seterr(**old_settings)
        else:
            ret['moments_ci'][k] = (
                moments_sample_mean[k] * np.ones(2)
            )

    return ret



[docs]def microcanonical_averages(
    graph, runs=40, spanning_cluster=True, model='bond', alpha=alpha_1sigma,
    copy_result=True
):
    r'''
    Generate successive microcanonical percolation ensemble averages

    This is a :ref:`generator function <python:tut-generators>` to successively
    add one edge at a time from the graph to the percolation model for a number
    of independent runs in parallel.
    At each iteration, it calculates and returns the averaged cluster
    statistics.

    Parameters
    ----------
    graph : networkx.Graph
        The substrate graph on which percolation is to take place

    runs : int, optional
        Number of independent runs.
        Defaults to ``40``.

    spanning_cluster : bool, optional
        Defaults to ``True``.

    model : str, optional
        The percolation model (either ``'bond'`` or ``'site'``).
        Defaults to ``'bond'``.

        .. note:: Other models than ``'bond'`` are not supported yet.

    alpha: float, optional
        Significance level.
        Defaults to 1 sigma of the normal distribution.
        ``1 - alpha`` is the confidence level.

    copy_result : bool, optional
        Whether to return a copy or a reference to the result dictionary.
        Defaults to ``True``.

    Yields
    ------
    ret : dict
        Cluster statistics

    ret['n'] : int
        Number of occupied bonds

    ret['N'] : int
        Total number of sites

    ret['M'] : int
        Total number of bonds

    ret['spanning_cluster'] : float
        The average number (Binomial proportion) of runs that have a spanning
        cluster.
        This is the Bayesian point estimate of the posterior mean, with a
        uniform prior.
        Only exists if `spanning_cluster` is set to ``True``.

    ret['spanning_cluster_ci'] : 1-D :py:class:`numpy.ndarray` of float, size 2
        The lower and upper bounds of the Binomial proportion confidence
        interval with uniform prior.
        Only exists if `spanning_cluster` is set to ``True``.

    ret['max_cluster_size'] : float
        Average size of the largest cluster (absolute number of sites)

    ret['max_cluster_size_ci'] : 1-D :py:class:`numpy.ndarray` of float, size 2
        Lower and upper bounds of the normal confidence interval of the average
        size of the largest cluster (absolute number of sites)

    ret['moments'] : 1-D :py:class:`numpy.ndarray` of float, size 5
        The ``k``-th entry is the average ``k``-th raw moment of the (absolute)
        cluster size distribution, with ``k`` ranging from ``0`` to ``4``.

    ret['moments_ci'] : 2-D :py:class:`numpy.ndarray` of float, shape (5,2)
        ``ret['moments_ci'][k]`` are the lower and upper bounds of the normal
        confidence interval of the average ``k``-th raw moment of the
        (absolute) cluster size distribution, with ``k`` ranging from ``0`` to
        ``4``.

    Raises
    ------
    ValueError
        If `runs` is not a positive integer

    ValueError
        If `alpha` is not a float in the interval (0, 1)

    See also
    --------

    sample_states

    percolate.percolate._microcanonical_average_spanning_cluster

    percolate.percolate._microcanonical_average_max_cluster_size

    Notes
    -----
    Iterating through this generator corresponds to several parallel runs of
    the Newman-Ziff algorithm.
    Each iteration yields a microcanonical percolation ensemble for the number
    :math:`n` of occupied bonds. [9]_
    The first iteration yields the trivial microcanonical percolation ensemble
    with :math:`n = 0` occupied bonds.

    Spanning cluster

        .. seealso:: :py:func:`sample_states`

    Raw moments of the cluster size distribution

        .. seealso:: :py:func:`sample_states`


    References
    ----------
    .. [9] Newman, M. E. J. & Ziff, R. M. Fast monte carlo algorithm for site
        or bond percolation. Physical Review E 64, 016706+ (2001),
        `doi:10.1103/physreve.64.016706 <http://dx.doi.org/10.1103/physreve.64.016706>`_.

    '''

    try:
        runs = int(runs)
    except:
        raise ValueError("runs needs to be a positive integer")

    if runs <= 0:
        raise ValueError("runs needs to be a positive integer")

    try:
        alpha = float(alpha)
    except:
        raise ValueError("alpha needs to be a float in the interval (0, 1)")

    if alpha <= 0.0 or alpha >= 1.0:
        raise ValueError("alpha needs to be a float in the interval (0, 1)")

    # initial iteration
    # we do not need a copy of the result dictionary since we copy the values
    # anyway
    run_iterators = [
        sample_states(
            graph, spanning_cluster=spanning_cluster, model=model,
            copy_result=False
        )
        for _ in range(runs)
    ]

    ret = dict()
    for microcanonical_ensemble in zip(*run_iterators):
        # merge cluster statistics
        ret['n'] = microcanonical_ensemble[0]['n']
        ret['N'] = microcanonical_ensemble[0]['N']
        ret['M'] = microcanonical_ensemble[0]['M']

        max_cluster_size = np.empty(runs)
        moments = np.empty((runs, 5))
        if spanning_cluster:
            has_spanning_cluster = np.empty(runs)

        for r, state in enumerate(microcanonical_ensemble):
            assert state['n'] == ret['n']
            assert state['N'] == ret['N']
            assert state['M'] == ret['M']
            max_cluster_size[r] = state['max_cluster_size']
            moments[r] = state['moments']
            if spanning_cluster:
                has_spanning_cluster[r] = state['has_spanning_cluster']

        ret.update(_microcanonical_average_max_cluster_size(
            max_cluster_size, alpha
        ))

        ret.update(_microcanonical_average_moments(moments, alpha))

        if spanning_cluster:
            ret.update(_microcanonical_average_spanning_cluster(
                has_spanning_cluster, alpha
            ))

        if copy_result:
            yield copy.deepcopy(ret)
        else:
            yield ret



[docs]def spanning_1d_chain(length):
    """
    Generate a linear chain with auxiliary nodes for spanning cluster detection

    Parameters
    ----------

    length : int
       Number of nodes in the chain, excluding the auxiliary nodes.

    Returns
    -------

    networkx.Graph
       A linear chain graph with auxiliary nodes for spanning cluster detection

    See Also
    --------

    sample_states : spanning cluster detection

    """
    ret = nx.grid_graph(dim=[length + 2])

    ret.node[0]['span'] = 0
    ret[0][1]['span'] = 0
    ret.node[length + 1]['span'] = 1
    ret[length][length + 1]['span'] = 1

    return ret



[docs]def spanning_2d_grid(length):
    """
    Generate a square lattice with auxiliary nodes for spanning detection

    Parameters
    ----------

    length : int
       Number of nodes in one dimension, excluding the auxiliary nodes.

    Returns
    -------

    networkx.Graph
       A square lattice graph with auxiliary nodes for spanning cluster
       detection

    See Also
    --------

    sample_states : spanning cluster detection

    """
    ret = nx.grid_2d_graph(length + 2, length)

    for i in range(length):
        # side 0
        ret.node[(0, i)]['span'] = 0
        ret[(0, i)][(1, i)]['span'] = 0

        # side 1
        ret.node[(length + 1, i)]['span'] = 1
        ret[(length + 1, i)][(length, i)]['span'] = 1

    return ret



[docs]def microcanonical_averages_arrays(microcanonical_averages):
    """
    Compile microcanonical averages over all iteration steps into single arrays

    Helper function to aggregate the microcanonical averages over all iteration
    steps into single arrays for further processing

    Parameters
    ----------

    microcanonical_averages : iterable
       Typically, this is the :func:`microcanonical_averages` generator

    Returns
    -------

    ret : dict
       Aggregated cluster statistics

    ret['N'] : int
        Total number of sites

    ret['M'] : int
        Total number of bonds

    ret['spanning_cluster'] : 1-D :py:class:`numpy.ndarray` of float
        The percolation probability:
        The normalized average number of runs that have a spanning cluster.

    ret['spanning_cluster_ci'] : 2-D :py:class:`numpy.ndarray` of float, size 2
        The lower and upper bounds of the percolation probability.

    ret['max_cluster_size'] : 1-D :py:class:`numpy.ndarray` of float
        The percolation strength:
        Average relative size of the largest cluster

    ret['max_cluster_size_ci'] : 2-D :py:class:`numpy.ndarray` of float
        Lower and upper bounds of the normal confidence interval of the
        percolation strength.

    ret['moments'] : 2-D :py:class:`numpy.ndarray` of float, shape (5, M + 1)
        Average raw moments of the (relative) cluster size distribution.

    ret['moments_ci'] : 3-D :py:class:`numpy.ndarray` of float, shape (5, M + 1, 2)
        Lower and upper bounds of the normal confidence interval of the raw
        moments of the (relative) cluster size distribution.

    See Also
    --------

    microcanonical_averages

    """

    ret = dict()

    for n, microcanonical_average in enumerate(microcanonical_averages):
        assert n == microcanonical_average['n']
        if n == 0:
            num_edges = microcanonical_average['M']
            num_sites = microcanonical_average['N']
            spanning_cluster = ('spanning_cluster' in microcanonical_average)
            ret['max_cluster_size'] = np.empty(num_edges + 1)
            ret['max_cluster_size_ci'] = np.empty((num_edges + 1, 2))

            if spanning_cluster:
                ret['spanning_cluster'] = np.empty(num_edges + 1)
                ret['spanning_cluster_ci'] = np.empty((num_edges + 1, 2))

            ret['moments'] = np.empty((5, num_edges + 1))
            ret['moments_ci'] = np.empty((5, num_edges + 1, 2))

        ret['max_cluster_size'][n] = microcanonical_average['max_cluster_size']
        ret['max_cluster_size_ci'][n] = (
            microcanonical_average['max_cluster_size_ci']
        )

        if spanning_cluster:
            ret['spanning_cluster'][n] = (
                microcanonical_average['spanning_cluster']
            )
            ret['spanning_cluster_ci'][n] = (
                microcanonical_average['spanning_cluster_ci']
            )

        ret['moments'][:, n] = microcanonical_average['moments']
        ret['moments_ci'][:, n] = microcanonical_average['moments_ci']

    # normalize by number of sites
    for key in ret:
        if 'spanning_cluster' in key:
            continue
        ret[key] /= num_sites

    ret['M'] = num_edges
    ret['N'] = num_sites
    return ret



[docs]def _binomial_pmf(n, p):
    """
    Compute the binomial PMF according to Newman and Ziff

    Helper function for :func:`canonical_averages`

    See Also
    --------

    canonical_averages

    Notes
    -----

    See Newman & Ziff, Equation (10) [10]_

    References
    ----------

    .. [10] Newman, M. E. J. & Ziff, R. M. Fast monte carlo algorithm for site
        or bond percolation. Physical Review E 64, 016706+ (2001),
        `doi:10.1103/physreve.64.016706 <http://dx.doi.org/10.1103/physreve.64.016706>`_.

    """

    ret = np.empty(n + 1)

    nmax = int(np.round(p * n))

    ret[nmax] = 1.0

    old_settings = np.seterr(under='ignore')  # seterr to known value

    for i in range(nmax + 1, n + 1):
        ret[i] = ret[i - 1] * (n - i + 1.0) / i * p / (1.0 - p)

    for i in range(nmax - 1, -1, -1):
        ret[i] = ret[i + 1] * (i + 1.0) / (n - i) * (1.0 - p) / p

    np.seterr(**old_settings)  # reset to default

    return ret / ret.sum()



[docs]def canonical_averages(ps, microcanonical_averages_arrays):
    """
    Compute the canonical cluster statistics from microcanonical statistics

    This is according to Newman and Ziff, Equation (2).
    Note that we also simply average the bounds of the confidence intervals
    according to this formula.

    Parameters
    ----------

    ps : iterable of float
       Each entry is a probability for which to form the canonical ensemble
       and compute the weighted statistics from the microcanonical statistics

    microcanonical_averages_arrays
       Typically the output of :func:`microcanonical_averages_arrays`

    Returns
    -------

    ret : dict
       Canonical ensemble cluster statistics

    ret['ps'] : iterable of float
        The parameter `ps`

    ret['N'] : int
        Total number of sites

    ret['M'] : int
        Total number of bonds

    ret['spanning_cluster'] : 1-D :py:class:`numpy.ndarray` of float
        The percolation probability:
        The normalized average number of runs that have a spanning cluster.

    ret['spanning_cluster_ci'] : 2-D :py:class:`numpy.ndarray` of float, size 2
        The lower and upper bounds of the percolation probability.

    ret['max_cluster_size'] : 1-D :py:class:`numpy.ndarray` of float
        The percolation strength:
        Average relative size of the largest cluster

    ret['max_cluster_size_ci'] : 2-D :py:class:`numpy.ndarray` of float
        Lower and upper bounds of the normal confidence interval of the
        percolation strength.

    ret['moments'] : 2-D :py:class:`numpy.ndarray` of float, shape (5, M + 1)
        Average raw moments of the (relative) cluster size distribution.

    ret['moments_ci'] : 3-D :py:class:`numpy.ndarray` of float, shape (5, M + 1, 2)
        Lower and upper bounds of the normal confidence interval of the raw
        moments of the (relative) cluster size distribution.

    See Also
    --------

    microcanonical_averages

    microcanonical_averages_arrays


    """

    num_sites = microcanonical_averages_arrays['N']
    num_edges = microcanonical_averages_arrays['M']
    spanning_cluster = ('spanning_cluster' in microcanonical_averages_arrays)

    ret = dict()
    ret['ps'] = ps
    ret['N'] = num_sites
    ret['M'] = num_edges

    ret['max_cluster_size'] = np.empty(ps.size)
    ret['max_cluster_size_ci'] = np.empty((ps.size, 2))

    if spanning_cluster:
        ret['spanning_cluster'] = np.empty(ps.size)
        ret['spanning_cluster_ci'] = np.empty((ps.size, 2))

    ret['moments'] = np.empty((5, ps.size))
    ret['moments_ci'] = np.empty((5, ps.size, 2))

    for p_index, p in enumerate(ps):
        binomials = _binomial_pmf(n=num_edges, p=p)

        for key, value in microcanonical_averages_arrays.items():
            if len(key) <= 1:
                continue

            if key in ['max_cluster_size', 'spanning_cluster']:
                ret[key][p_index] = np.sum(binomials * value)
            elif key in ['max_cluster_size_ci', 'spanning_cluster_ci']:
                ret[key][p_index] = np.sum(
                    np.tile(binomials, (2, 1)).T * value, axis=0
                )
            elif key == 'moments':
                ret[key][:, p_index] = np.sum(
                    np.tile(binomials, (5, 1)) * value, axis=1
                )
            elif key == 'moments_ci':
                ret[key][:, p_index] = np.sum(
                    np.rollaxis(np.tile(binomials, (5, 2, 1)), 2, 1) * value,
                    axis=1
                )
            else:
                raise NotImplementedError(
                    '{}-dimensional array'.format(value.ndim)
                )

    return ret



[docs]def statistics(
    graph, ps, spanning_cluster=True, model='bond', alpha=alpha_1sigma, runs=40
):
    """
    Helper function to compute percolation statistics

    See Also
    --------

    canonical_averages

    microcanonical_averages

    sample_states

    """

    my_microcanonical_averages = microcanonical_averages(
        graph=graph, runs=runs, spanning_cluster=spanning_cluster, model=model,
        alpha=alpha
    )

    my_microcanonical_averages_arrays = microcanonical_averages_arrays(
        my_microcanonical_averages
    )

    return canonical_averages(ps, my_microcanonical_averages_arrays)
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